ml
  • Introduction
  • 机器学习基础
    • 机器学习基础_距离
    • 机器学习基础_概率论基础
    • 机器学习基础_线性代数基础
    • 机器学习基础_微积分基础
    • 机器学习基础_最优化理论
    • 机器学习基础_损失函数
  • 特征工程
    • 特征工程_归一化
    • 特征工程_编码
    • 特征工程_特征组合
    • 特征工程_特征选择
    • 特征工程_文本表示模型
    • 特征工程_图像增强
  • 模型评估
    • 模型评估_评估指标
    • 模型评估_AB测试
    • 模型评估_过拟合和欠拟合
    • 模型评估_超参数选择
    • 模型评估_模型评估方法
  • 降维
    • 降维_PCA主成分分析
    • 降维_LDA线性判别分析
  • 监督学习
    • 监督学习_朴素贝叶斯分类
    • 监督学习_决策树
    • 监督学习_K近邻法
    • 监督学习_支持向量机
    • 监督学习_CRF
  • 非监督学习
    • 非监督学习_K均值
    • 非监督学习_Mean_Shift均值漂移聚类
    • 非监督学习_DBSCAN基于密度的聚类方法
    • 非监督学习_Hierarchical_Clustering层次聚类
    • 非监督学习_Spectral_Clustering谱聚类
  • 半监督学习
  • 集成学习
  • 强化学习
Powered by GitBook
On this page
  • 超参数选择
  • 网格搜索
  • 随机搜索
  • 贝叶斯优化

Was this helpful?

  1. 模型评估

模型评估_超参数选择

Previous模型评估_过拟合和欠拟合Next模型评估_模型评估方法

Last updated 3 years ago

Was this helpful?

[TOC]

超参数选择

为了进行超参数调优,我们一般会采用网格搜索、随机搜索、贝叶斯 优化等算法。在具体介绍算法之前,需要明确超参数搜索算法一般包括哪几个要素。

目标函数,即算法需要最大化/最小化的目标

搜索范围, 一般通过上限和下限来确定

算法的其他参数,如搜索步长。

网格搜索

网格搜索可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。

如果采用较大的搜索范围以及较小的步长,网格搜索有很大概率找到全局最优值。

然而,这种搜索方案十分消耗计算资源和时间,特别是需要调优的超参数比较多的时候。 因此,在实际应用中,网格搜索法一般会先使用较广的搜索范围和较大的步长,来寻找全局最优值可能的位置;然后会逐渐缩小搜索范围和步长,来寻找更精确的最优值。这种操作方案可以降低所需的时间和计算 量,但由于目标函数一般是非凸的,所以很可能会错过全局最优值。

随机搜索

随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有值,而是在搜索范围中随机选取样本点。

它的理论依据是,如果样本点集足够大,那么通过随机采样也能大概率地找到全局最优值, 或其近似值。随机搜索一般会比网格搜索要快一些,但是和网格搜索的快速版一样,它的结果也是没法保证的。

贝叶斯优化

贝叶斯优化算法在寻找最优最值参数时,采用了与网格搜索、随机搜索完全不同的方法。

网格搜索和随机搜索在测试一个新点时,会忽略前一 个点的信息;而贝叶斯优化算法则充分利用了之前的信息。

贝叶斯优化算法通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。

具体来说,它学习目标函数形状的方法是,首先根据先验分布,假设一个搜集函数;然后,每一次使用新的采样点来测试目标函数时,利用这个信息来更新目标函数的先验分布;最后,算法测试由后验分布给出的全 局最值最可能出现的位置的点。

对于贝叶斯优化算法,有一个需要注意的地方,一旦找到了一个局部最优值,它会在该区域不断采样,所以很容易陷入局部最优值。

为了弥补这个缺陷,贝叶斯优化算法会在探索和利用之间找到一个平衡点,“探索”就是在还未取样的区域获取采样点;而“利 用”则是根据后验分布在最可能出现全局最值的区域进行采样。

异世界.png